Simulations Gallery

Simulations Gallery

Dynamics of Phase Transitions

  1. Phase Separation Phenomena

      Classification (Model A,B,C,D,H) comes from P.C. Hohenberg and B.I. Halperin,
      Review of Modern Physics 49, 435 (1977).

    • modelA (Commnet)
      1. (MPEG)
      2. (MPEG)

      3. modelB (Commnet)

          Dynamical Phase

          |phi_sp|=0.5773... (ca. 78.9:21.1)

        • Spinodal Decomposition
          1. phi=0.00 (50:50) 2D simulation Case 1 (MPEG)
          2. phi=0.00 (50:50) 2D simulation Case 2 (MPEG)
          3. phi=0.00 (50:50) 3D simulation (128x128x128)


            Energy vs Time
          4. phi=-0.40 (30:70)(MPEG)
          5. phi=-0.60 (20:80)(MPEG)
        • Nucleation Growth
          1. phi=-0.70 (15:85) (MPEG)

      4. modelC (MPEG) (Commnet)

      5. modelD (MPEG) (Commnet)

      6. modelH (MPEG) (Commnet)
        • Isotropic System (Commnet)
        • under shear flow

          At around gamma=1~2, the shear stress shows a peak, where the domain
          is elongated along (1,1,0)-direction. The 1st normal stress N_1
          gradually increases with the imposed strain, gamma. Then, N_1 reaches
          to a value at a steady state where the elongated domains are aligned
          to (1,0,0)-direction.

          (GIF)(Comment)

      7. Binary Alloy + Elastic Effect

        • (a)Isotropic System (MPEG) (Commnet)

        • (b)Anisotropic System(due to the Symmetry of Crystal)(MPEG)(Commnet)

      8. Viscoelastic Phase Separation (Polymer Solution) (Comment)
      9. Block Copolymer
          Phase Ordering Dynamics of Block Coplymer (1:1)
        • Under No Shear Flow
        • Under Shear Flow (1:1)

  2. Liquid Crystal (Ordering Dynamcis using Director Field)
    • Ordering Dynamics under no shear flow with Noise
    • Ordering Dynamics under no shear flow
    • Ordering Dynamics under shear shear flow

To Top Page

To small room of simulation (For 4th Year Students, in Japanese)


Last modified: Fri Nov 9 14:29:46 JST 2007