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1. The Langevin equation 
 

Let us consider the dynamics of a polymeric molecule, which is modeled as a 
non-interacting chain composed of   N +1 spherical beads (   n = 0,1,2,!, N ) and  N springs 
connecting between consecutive beads, in a solvent with steady flow field  v(r) . 
 
 

 
 
 
 
 
 
 
 
 
Using the physical variables and the parameters defined below, 
 

   Rn(t)   Position of bead n at time t 

   Vn(t)    Velocity of bead n at time t 

   gn(t),g 'n(t)   Thermal (random) force acting on bead n at time t 

   
fm,n(t)    Force acting on bead n due to adjacent bead m at time t 

 m    Mass of a bead 

  ζ = 6πηa   Friction constant of a bead (radius a ) in solvent (viscosityη ) 

 T    Temperature 

  3kBT b2   Spring constant between adjacent beads 

 Db = kBT ζ   Diffusion constant of beads 

 b    Average separation between adjacent beads 
 c    Number density of polymer molecules 

 
the equation of motion for bead n is given by 

   
m

dVn

dt
= ζ Vn − v(Rn )( ) + fn−1,n + fn+1,n + g 'n .    (1) 

Then the use of 
   
dVn

dt
= 0  (over damped assumption), 

  
Vn =

dRn

dt
, 

   
fm,n =

3kBT
b2 Rm − Rn( ) , 

and a specially uniform velocity gradient 
 
κ ≡ ∂v

∂r
, yields the Langevin equation of the form 

    

dRn

dt
= −

3kBT
ζb2 Rn+1 − 2Rn + Rn−1( ) +κ i Rn + gn(t) ,    (2) 

where   R−1 = R0  and    R N+1 = R N are used to take care of boundary conditions at the both 

Bead and spring model in solvent. 

  n+1  n−1

   
fn−1,n    

fn+1,n  v(r)  n



ends of the chain, and the thermal force should satisfy the condition 

 
   

gn(t) = 0 , 
   

gn(t)gm(t ') = 2
kBT
ζ

δ nmδ (t − t ')I ,    (3) 

to reproduce the equilibrium fluctuations correctly.  
 
2. Normal mode 
 

By introducing the discrete cosine transformation 
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and the inverse transformation 

 
   
Rn(t) = X0(t)+ 2 X p (t)
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the Langevin equation for the p-th normal mode can be obtained as 

 
   

dX p

dt
= −

kp

ζ p

X p +κ i X p + g p ,      (6) 

where 
  
kp =

6kBT (N +1)
b2 4sin2 pπ

2(N +1)
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ , 

  
ζ p = (N +1)ζ (2−δ0 p ) , 

 
   

g p (t) = 0 , 
   

g p (t)gq (t ') = 2
kBT
ζ

δ pqδ (t − t ')
(N +1)(2−δ0 p )

I .    (7) 

 
When flow does not exist  κ = 0 , the 0-th mode can be obtained as 

 
   
X0(t) = X0(0)+ g0(t ')dt '

0

t

∫ .      (8) 

Because the center of mass of the chain is given by 
   
X0(t) = 1

N +1
Rn(t)

n=0

N

∑ , the diffusion constant 

for the center of mass of the chain can then be calculated 

 

    

DG ≡ DR = 1
6t

X0(t)− X0(0)( )2
= 1

6t
dt '

0

t

∫ dt ''g0(t ') i
0

t

∫ g0(t '')

=
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=
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ζ (N +1)
∝ N −1 .

  (9) 

The time correlation function for the p-th normal mode is determined to be 
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2 exp − t
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where 

 

    

X p
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  (11) 

represents the magnitude of the fluctuations and  



 

   

τ p =
ζ p

kp

= ζb2

3kBT
4sin2 pπ

2(N +1)
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

−1

≈ ζb2(N +1)2

3π 2kBTp2 for p≪ N
⎛

⎝⎜
⎞

⎠⎟
 (12) 

represents the relaxation times of the p-th normal mode for   p ≥1. 
 
3. Beads (segments) motions 
 

Using the definition of the inverse cosine transformation the mean square displacements 

  φn(t)  of the individual beads (segments) is given by 

 

    

φn(t) ≡ 1
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The first term dominates for 
   
t ≫ τ p=1 , thus 

  φn(t) ≈ 6DGt . 

However, the second term dominates for 
   
τ p=N ≪ t ≪ τ p=1 , thus 
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4. Stress relaxation function 

When we consider a simple shear flow 

  

κ =
0 !γ 0
0 0 0
0 0 0
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, substitution of this into the 

Langevin equation for the p-th normal mode yields 

   

d X p
x X p

y

dt
= −

2kp

ζ p

X p
x X p

y + !γ X p
y( )2

.    (15) 

Because flow exists only in x-direction, we can estimate the fluctuation in y-direction 

   
X p

y( )2
≈ X p

2 3= kBT kp to close the above differential equation. We then finally obtain 
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exp −
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From the expression for the macroscopic stress we already obtained, it can be reformulated with the 
normal modes using the inverse cosine transformation as shown below. 
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Comparing the last equation with the Maxwell’s superposition principle 

   
σ xy = dt 'G(t − t ') !γ (t ')

−∞

t

∫ ,      (18) 

the stress relaxation function for the Rouse model is finally determined as 

 

   

G(t) =
ckBT
N +1

exp −
2kp

ζ p

t
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥p=1

N

∑ =
ckBT
N +1

exp
p=1

N

∑ −2
t
τ p

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
ckBT
N +1

exp
p=1

N

∑ −24sin2 pπ
2(N +1)

⎛
⎝⎜

⎞
⎠⎟

t
τ b

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≈
ckBT
N +1

exp − 6 pπ
N +1

t
τ b

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥p=0

∞

∫ =
ckBT
24π

τ b

t
, (τ p=N ≪ t ≪ τ p=1)

 (19) 

where 
  
τ b =

ζb2

kBT
 represents a unit time according to the bead motion i.e., the diffusion time of a bead 

particle over the unit length b . From the mechanical definition of the shear viscosity upon application 
of a step shear flow (   !γ (t) = 0  for   t < 0 and    !γ (t) = !γ  for   t ≥ 0 ), 



. 
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Appendix A.  

Riemann zeta function 
  
ζ (s) = 1

ps
p=1

∞

∑  is a function of a complex variable s that converges when the 

real part of s is greater than 1.  ζ (2)  and  ζ (3 2)  appear in the Rouse and the Zimm models, 
respectively. 
 
Specific values: 
 

 

  

ζ (1) = ∞
ζ (3 2) = 2.612!
ζ (2) = π 2 6 = 1.6449!
ζ (3) = 1.20205!
ζ (4) = π 4 90 =1.0823!

"

 


