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1. The Langevin equation

Using the mobility tensor H to take into account the hydrodynamic interactions (HD

between particles m and n, the Langevin equation for the motions of bead n is now modified to be
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If H,  is chosen to be neglecting HI, i.e.,
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it recovers the Langevin equation used in the previous case of Rouse model
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While HI can be correctly captured, at the lowest order in respect to the inter particle distance
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the Langevin equation becomes intractable due to too complicated couplings between Rn and

R, depending on instantaneous forms of the polymer chain.

2. Pre-averaging of HI

A drastic simplification is introduced in the Zimm model by replacing the original Oseen

tensor with its pre-averaged form
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thus the Langevin equation becomes
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Using the discrete cosine transformation
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the Langevin equation for the p-th normal mode can be obtained as
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Finally, the Langevin equation becomes independent
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3. The dynamics of Zimm model

Similarly to the Rouse model, the time correlation function for the p-th normal mode
is determined to be
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represents the magnitude of the fluctuations and
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represents the relaxation times of the p-th normal mode.

The diffusion constant for the center of mass of the chain can then be calculated as
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4. Beads (segments) motions

The mean square displacements ¢n (t) of the individual beads (segments) is given by
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The first term dominates for ¢ 7 =1, thus
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5. Stress correlation function

The Zimm model predicts the stress relaxation function of the from
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The shear viscosity is thus calculated as
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Appendix A.

Because the distribution of an is Gaussian with the variance ‘n —m‘bz,
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Appendix B.
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