Summary for the Rouse model
Ryoichi Yamamoto

1. The Langevin equation

Let us consider the dynamics of a polymeric molecule, which is modeled as a
non-interacting chain composed of N +1 spherical beads (n=0,1,2,---,N ) and N springs

connecting between consecutive beads, in a solvent with steady flow field v(r).
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Bead and spring model in solvent.

Using the physical variables and the parameters defined below,

R (7) Position of bead n at time ¢

V (1) Velocity of bead n at time ¢

g (1).8' (1) Thermal (random) force acting on bead n at time ¢

£, Force acting on bead n due to adjacent bead m at time ¢

m Mass of a bead

{=6mna Friction constant of a bead (radius a) in solvent (viscosity 1)
T Temperature

?)chT/b2 Spring constant between adjacent beads

D, = kBT/C Diffusion constant of beads

b Average separation between adjacent beads
c Number density of polymer molecules

the equation of motion for bead n is given by
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and a specially uniform velocity gradient K = a— , yields the Langevin equation of the form
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where R =R and R, =R, are used to take care of boundary conditions at the both



ends of the chain, and the thermal force should satisfy the condition

(6,0)=0,  (g,0g,@))=2% g

to reproduce the equilibrium fluctuations correctly.
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2. Normal mode

By introducing the discrete cosine transformation

(t)——ZR (t)cos[ +1( %ﬂ (4)

and the inverse transformation
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the Langevin equation for the p-th normal mode can be obtained as
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When flow does not exist K =0, the 0-th mode can be obtained as
t
X, (£)= X, (0)+ jo g, (t)dt'. ®)
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Because the center of mass of the chain is given by X (7)= man(Z) , the diffusion constant
n=0

for the center of mass of the chain can then be calculated
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The time correlation function for the p-th normal mode is determined to be

(X, (0)-X (0)=(X >exp[—[;p]], (10

where
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represents the magnitude of the fluctuations and
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represents the relaxation times of the p-th normal mode for p >1.

3. Beads (segments) motions

Using the definition of the inverse cosine transformation the mean square displacements
¢, (t) of the individual beads (segments) is given by
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The first term dominates for > 7T 10 thus

¢ (1)=6D,t.
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However, the second term dominates for 7 _, <7<7 _,thus
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4. Stress relaxation function

0 7 O
When we consider a simple shear flow Kk =| 0 0 O |, substitution of this into the
0 0 O
Langevin equation for the p-th normal mode yields
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Because flow exists only in x-direction, we can estimate the fluctuation in ydirection

2
<(X y) > ~ <X2 > / 3=k, T / k to close the above differential equation. We then finally obtain
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From the expression for the macroscopic stress we already obtained, it can be reformulated with the

normal modes using the inverse cosine transformation as shown below.
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Comparing the last equation with the Maxwell’s superposition principle

= [ G-y, (18)

the stress relaxation function for the Rouse model is finally determined as
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where T, =—— represents a unit time according to the bead motion 1.e., the diffusion time of a bead

B
particle over the unit length . From the mechanical definition of the shear viscosity upon application

of a step shear flow (y(¢)=0 for t<0and y(¢)=7y for £=0),
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Appendix A.

Riemann zeta function {(s)= Z—S is a function of a complex variable s that converges when the
p=1

real part of s is greater than 1. {(2) and § (3/2) appear in the Rouse and the Zimm models,

respectively.

Specific values:

(1) =0
£(3/2)=2.612---
£(2)=n*/6=1.6449-.-
£(3)=1.20205---
C(4)=7r"/90=1.0823.--



