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Brownian motion 1: basic theories

Basic knowledge of stochastic process

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University 1

Stochastic process

A deterministic process:
X(t)= Func(t)
X A

X(t)= Func(t)

> [
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Stochastic process

A stochastic process:
Y(t) # Func(t) — Prob(y,,t; y,t)
Y A

Prob(y,.t,; y,t)

v
~

t
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Stochastic process

A stochastic process:
Y(t) # Func(t) — Prob(y,,t; y,t)
Y A
yo """""

Prob(y,,t,+ T, y,t+7)

t,+7T
A steady stochastic process:
Prob(y,,t,+T;y,t+7)= Prob(y,,t,;y,t)
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Stochastic process

Consider a steady stochastic process Y(¢r) with its mean

<Y (t)> =0 and define Fourier transformation

Y (0)= j_‘:dzefw’YT(t) (1)
and inverse Fourier transformation
1 « — it X7
vn=— [ dwe™7,(w) (2)

using
Y. (=Y ({<7/2)

Y,0=0 (4>71/2) ®
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Stochastic process

Spectral density / Power spectrum
S, (@)= lim %|YT (o) (4)

SA

Y

v
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Stochastic process

Case 1: Single cosine wave

RNV
VUV

| Y(¢)= Acos(a)l}) | (5) S (w)=48(w-v,) (6

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University 7

Stochastic process

Case 2: White noise

il 4“" ' |H | |' i ’\ | |
(il

_/ 1 ‘ | r{“ m { | ‘|

Y()=AE(t)  (7) S (w)=4> (8
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Stochastic process

Auto-correlation function

¢Y(t)z liml :dTYT(T)YT(T+t)E<Y(7;)Y(T+t)>T (9)

T—oe T’

YA

v

T T+t
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Stochastic process

Auto-correlation function

¢Y(t)z liml :dr}?(r)ﬁ(r+t)z<Y(T)Y(T+;)>T (9)

T—o0

Y 4 ¢YA

0,(0)=(7?)

v
v
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Stochastic process

Case 1: Single cosine wave

VAN TR /\ --/-\----‘+A2/z
Ay

Y(t)= Acos(w,?) (10) ¢, ()= A?cos(a)lt) (11)

+ A4
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Stochastic process

o, (t) = ;1_1)1301472 J-i chos(a)IT)cos(a)l(T + t))
- ;E?o%zj_ggdrsin(wlr + g}sin((ol(r +1)+ %j

AT Tl . n T .
:hm—J dtsin| @ T+— || sin| @ T +— cos(a)lt)+cos 0T+ sm(a)lt)
T T 75 2 2 2
2 7

. A" . 2 T . T T .
=lim— | dt| sin 0T+ cos(a)lt)+sm O 7T+ |Cos| OT+— sm(a)lt)
T—e T J-% 2 2 2

2

S T A* ¢t T T
:cos(wlt);im7 <T dTSin2 COIT-i-E +Si1’1((011);im7 TdTSil’l a)11+5 CcoS G)IT+E
—>00 ) —>c0 )
2

= TCOS(Q’J)"'O -+ Eq.(11)
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Stochastic process

Case 2: White noise

+4 || ‘ "'L | ” ’\i‘
H \_ il “ ‘ | I t
|l !

|

/I ‘ | r{“ m

‘Y(t):Aé(t) (12) o (0)= 451 (13)

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University 13

Stochastic process

From Eq.(9),

S 1 —io(T+1) 7
(pY(t):hm? dr{)@(r)[gimda)e ( )YT((o)ﬂ

T—eo —oo

—lim—— [ da e""‘”ﬁ(w)f:df[e_myr(f)ﬂ

T gl Y= |
: 1 « [ it o

=lim—— " do[ e Y ()Y ()]

=L dwe ™ 1iml|Y(co)\2 1 j“ doe ™S (0) (14
27 J— T—e T T 27 J— 4
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Stochastic process

And also,

S, ()= dte”p, (1)

Wiener-Khintchine theorem:

(15)

inverse Foulier Eq.(14)

¢, ()3

Foulier Eq.(15)

-5, (o)

Sum rules:

¢,(0)= % [ dws, (o)

SY(O)=J:dt¢Y(t)

(16)
(17)

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University 15
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Brownian motion 1: basic theories

Brownian motion and the Langevin equation

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University

Brownian motion and the Langevin equation

Equation of motion of a Brownian particle:

Particle radius: a
Particle mass: m
Solvent viscosity: n
Friction constant: {=6nna
Particle position: R(?) el
Particle velocity: V(¢)=dR/dt R(¢) ,
Friction force: -V (1)
Random force: F(?)
Langevin Equation: mz =—(V+F (21)

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University
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Brownian motion and the Langevin equation

Random force:
F()=(F, (0. F (0., (1))

White noise:
(F,())=0 (22)
0,.(1)=(F,(0)F,(t+1))=2D5,,5(1) (23)
where o,Bex,y,z, and
§,=1 (a=p), 6,=0 (azp)
§(H)=e (t=0), 8(t)=0 (¢=0)

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University 3

Brownian motion and the Langevin equation

Power spectrum of random force F(¢):

5, ()= lim~ 2

T—o0

Fr (o)

— _oo dtg (1)

= [ at(F(x)-Fz+0))e”

= dt6Ds(1)e™
=6D (24)

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University 4
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Brownian motion and the Langevin equation

Property of random force F(¢):

SF QDF
A A

S.(w)=6D @, (t)=6D5(t)

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University

5

Brownian motion and the Langevin equation

Fourier transform Eq.(1)
—iomV_(0) =~V (0)+F (o)
F,(0)
—iom+(
Power Spectrum of particle velocity V(¢):

V, (@)=

S, (®)=lim

T—oo

1~ 2
f‘VT(w)‘
1 6D
mzwz_l_é«z - m2w2+§2 (25)

.
= lim ?|FT((D)|2

T—oo

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University



 12 


Brownian motion and the Langevin equation

Auto-correlation function of particle velocity V(¢):

Using Winner-Khintchine theorem and Eq.(6)

O, (t) = <V(T) . V(T + t)> = %J‘_‘: dCOSV (a))e—iwt

1 e 6D —iot
=—| do—5—F——e
2= mo +¢
3D 4
=C—mexp[—;\f|j (26)

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University

Brownian motion and the Langevin equation

Property of particle velocity V(¢):

?y

¢ __ 6D 3D (_QMJ

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University
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3k, T
m
3D 3k,T ~
e—=—L D=k,T{ (29)
{m m
Fluctuation-dissipation theorem

Stochastic Processes: Data Analysis and Computer Simulation

R. Yamamoto, Kyoto University

Brownian motion and the Langevin equation

9

Brownian motion and the Langevin equation

Displacement:  AR(f)= R(¢)— R(0) = j;V(tl)dtl

Mean square displacement:

<| AR(z)\2> - jo dt, jo dt,(V(1,)+ V(t,))
_ J.;dtljgdtz%exp[—%‘tz —tl‘)

Stochastic Processes: Data Analysis and Computer Simulation

R. Yamamoto, Kyoto University 10
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Brownian motion and the Langevin equation

>

Displacement:  AR(f)= R(£)— R(0) = jO’V(zl)azz1

Mean square displacement:

(aref )= [ an e (via)-viey)
Y ¢ 3D 4
= JO a’tl_[o dt, —exp[—z‘tz —t1|) >t
—2j dt L dt —exp(——(t 1 )j 2—?t+Cons.

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University 11

Brownian motion and the Langevin equation

Self diffusion constant:

<\ AR(r)\2> b

D=lm-——= (30)
o= 6t -

Einstein relation: (from Eq.(29) and (30))
k,T

D= (31)
¢
Stokes-Einstein relation: (from Eq.(31) and Stokes law { =6man)
k,.T
D=—~ (32)
6man

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University 12
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Brownian motion 1: basic theories

Linear response theory and the Green-Kubo formula

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University

Linear response theory and the G-K formula

A Brownian particle under the external forceF = Fe_

Langevin Equation:

m%z—CV+F+FOeX (41)

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University
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Linear response theory and the G-K formula

Steady state average under external force, lim<- - >

{—>o0 ext

(
tim(V)_, =(lim(v,)_.0.0)
lim(F) =(0,0,0)
im (e}, = (7,00

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University

3

Linear response theory and the G-K formula

Thus, the steady drift velocity:
_5_Dfy

=77 (42)

Lim (¥’ >m

t—oo V¥

Here we used the Einstein relation Eq. (31) and finally:
k,T
ext PZ)

(43)

D=1im(V,)

f—oo VX

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University
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Linear response theory and the G-K formula
The linear response theory (LRT):

References:
+ Barrat and Hansen “Basic concepts for simple and complex liquids” (Cambridge, 2003)
+ Zwanzig “Non-equilibrium statistical mechanics” (Oxford, 2001)

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University

5

Linear response theory and the G-K formula
The linear response theory (LRT):

References:
+ Barrat and Hansen “Basic concepts for simple and complex liquids” (Cambridge, 2003)
« Zwanzig “Non-equilibrium statistical mechanics” (Oxford, 2001)

H, : Equilibrium Hamiltonian
H, +H'(t) : Hamiltonian under external force F(¢)

conjugate with 4, H'(t)=—-AF(¢t)

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University
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Linear response theory and the G-K formula
The linear response theory (LRT):

References:

+ Barrat and Hansen “Basic concepts for simple and complex liquids” (Cambridge, 2003)
+ Zwanzig “Non-equilibrium statistical mechanics” (Oxford, 2001)

H

0

H,+ H'(?)

(B0),

0

B

0

: Equilibrium Hamiltonian

: Hamiltonian under external force F(¢)
conjugate with 4, H'(t)=—-AF(¢t)

: Average value of B at equilib. under H

<B(¢)>HO+HW =B, + <AB(¢)>HO+H,U)
: Average value of Bat t under H + H'(¢)

Stochastic Processes: Data Analysis and Computer Simulation

R. Yamamoto, Kyoto University

7

Linear response theory and the G-K formula

For a small external force with H'(t)=—AF(t), the time evolution
of Bis determined within LRT as:

(4B(1)), ,

= j ds @, (t—s)F(s)

(44)

Here @, (¢)1s the response function, which is defined as the

: : . dA ey .
cross correlation function of 4=— and B at equilibrium:

dt

CDBA(I)—

1
— (B(r+0)A(r)),

B

Stochastic Processes: Data Analysis and Computer Simulation

(45)

R. Yamamoto, Kyoto University
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Linear response theory and the G-K formula

Apply LRT to define self-diffusion constant D using
equilibrium correlation function. We assume:

A =R (1), Bl)=V (1)
F(t)=0O(t), H'(t)=-AF(t)=-R F,O(t)

F(t)“

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University

Linear response theory and the G-K formula
From LRT Egs. (44) and (45):

(480)),, =(V.0),, = frds V. wee=s,@),

F d , Fy e .
i [ a d_:' Va7, (@), = 6T Jode (7. @),
e - e (Vi )V (),
B

0 ﬁ: ¢ (t'=t-ys)

Stochastic Processes: Data Analysis and Computer Simulation R. Yamamoto, Kyoto University 10
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Linear response theory and the G-K formula

From Eqgs. (43) and (46):

D =1im(V (1)) il

{—>00 Hy+H'(1) Fo

=% f:dt'<V(r+t')-V(r)>HO

1 ¢
D= gjo drep, (1)

(Green-Kubo formula for D)

Stochastic Processes: Data Analysis and Computer Simulation

(47)

R. Yamamoto, Kyoto University 11
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eﬁ KyotoUx: 009x Stochastic Processes: Data Analysis and Computer Simulation Help

QO Outline > Week 3 > Homework 3> Homework 3

Homework 3
[ Bookmark this page

Homework 3-1

1.0 point possible (graded)
Calculate the auto-correlation function @y (¢) for a dynamic process Y (t) = Asin(w;t + 7). Choose the correct answer from the

following choices.
ey (t) = ATzcos(wlt)
ey (t) = ATzsin(wlt)
ey (t) = A cos(wit + )

py(t) = ATzsin(u.ut + )

Submit You have used 0 of 2 attempts

Homework 3-2

1.0 point possible (graded)
Calculate the auto-correlation function @y (£) for a dynamic process Y (£) = A cos(w;t) + BE(t), where £(t) is the White noise
introduced in Part 1. Choose the correct answer from the following choices.

oy (£) = 4 cos(wit) + ABy/cos(wit)d(t) + B24(%)
oy (t) = 4 cos(wit) + ABy/2 cos(wit)o(t) + B4(t)
oy (t) = L cos(wi1)d(?)

oy (£) = & cos(wit) + B24(t)

oy (£) = 4 cos(wit) — B24(t)

Submit You have used 0 of 2 attempts

Homework 3-3

2.0 points possible (graded)
Estimate the diffusion constant D of spherical particles with radius @ = 1um immersed in water at T' = 300K using the Stokes-

Einstein relation (Eq.(32))

_ kgT

D=
6man

https://courses.edx.org/courses/course-v1:KyotoUx+009x+1T2017/courseware/184bf634fad947ddbc8afccadfeaca71/15{f24c09ace481
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2017/5/19
and the following parameters
e Viscosity of water at room temperature: ) = 0.85 x 1073 Pa-s

e The Boltzmann constant: kg = 1.38064852 x 10723 J.k1

Choose the value closest to your answer from the following choices.

2.6 x 107 m2.s71
2.6 x 1073 m?2.s71
2.6 x 10719m?2.s71
2.6 x 107"m~2:s
2.6 x 107 ¥m=2.s
2.6 x 1079m=2.s

You have used 0 of 2 attempts

Submit

Homework 3-4
1.0 point possible (graded)
Calculate the right-hand-side of Eq.(47) using the correlation function given in Eq.(26).
3D
— S exp(~ L)
m

pv(t) = m

Dzl/ dt oy (t)
3 Jo

Choose the correct result for D from the following choices.

D

e

You have used 0 of 2 attempts

Submit

Homework 3-5
2.0 points possible (graded)

https://courses.edx.org/courses/course-v1:KyotoUx+009x+1T2017/courseware/184bf634fad947ddbc8afccadfeaca71/15{f24c09ace481
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Replace Fy — 2Fj in Eq.(41), then redo all the calculations to derive the equation corresponding to equation Eq.(47). Choose the
correct equation, relating the diffusion constant D to the velocity auto-correlation funciton ¢y (t) from the following choices.

D=1 [ dtev(t)
D= g Jo dt v (?)
D=1 [7dtey(t)
D=2 [ dtov(t)

1 poo
Submit You have used 0 of 2 attempts
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